chromium / chromium / src / third_party / freetype2.git / 8a459e5172dbb54b42d7b8247c98627d5cefb98d / . / src / sdf / ftsdf.c

/**************************************************************************** | |

* | |

* ftsdf.c | |

* | |

* Signed Distance Field support for outline fonts (body). | |

* | |

* Copyright (C) 2020-2021 by | |

* David Turner, Robert Wilhelm, and Werner Lemberg. | |

* | |

* Written by Anuj Verma. | |

* | |

* This file is part of the FreeType project, and may only be used, | |

* modified, and distributed under the terms of the FreeType project | |

* license, LICENSE.TXT. By continuing to use, modify, or distribute | |

* this file you indicate that you have read the license and | |

* understand and accept it fully. | |

* | |

*/ | |

#include <freetype/internal/ftobjs.h> | |

#include <freetype/internal/ftdebug.h> | |

#include <freetype/ftoutln.h> | |

#include <freetype/fttrigon.h> | |

#include "ftsdf.h" | |

#include "ftsdferrs.h" | |

/************************************************************************** | |

* | |

* A brief technical overview of how the SDF rasterizer works | |

* ---------------------------------------------------------- | |

* | |

* [Notes]: | |

* * SDF stands for Signed Distance Field everywhere. | |

* | |

* * This renderer generates SDF directly from outlines. There is | |

* another renderer called 'bsdf', which converts bitmaps to SDF; see | |

* file `ftbsdf.c` for more. | |

* | |

* * The basic idea of generating the SDF is taken from Viktor Chlumsky's | |

* research paper. | |

* | |

* Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance | |

* Fields. Master's thesis. Czech Technical University in Prague, | |

* Faculty of InformationTechnology, 2015. | |

* | |

* For more information: https://github.com/Chlumsky/msdfgen | |

* | |

* ======================================================================== | |

* | |

* Generating SDF from outlines is pretty straightforward. | |

* | |

* (1) We have a set of contours that make the outline of a shape/glyph. | |

* Each contour comprises of several edges, with three types of edges. | |

* | |

* * line segments | |

* * conic Bezier curves | |

* * cubic Bezier curves | |

* | |

* (2) Apart from the outlines we also have a two-dimensional grid, namely | |

* the bitmap that is used to represent the final SDF data. | |

* | |

* (3) In order to generate SDF, our task is to find shortest signed | |

* distance from each grid point to the outline. The 'signed | |

* distance' means that if the grid point is filled by any contour | |

* then its sign is positive, otherwise it is negative. The pseudo | |

* code is as follows. | |

* | |

* ``` | |

* foreach grid_point (x, y): | |

* { | |

* int min_dist = INT_MAX; | |

* | |

* foreach contour in outline: | |

* { | |

* foreach edge in contour: | |

* { | |

* // get shortest distance from point (x, y) to the edge | |

* d = get_min_dist(x, y, edge); | |

* | |

* if (d < min_dist) | |

* min_dist = d; | |

* } | |

* | |

* bitmap[x, y] = min_dist; | |

* } | |

* } | |

* ``` | |

* | |

* (4) After running this algorithm the bitmap contains information about | |

* the shortest distance from each point to the outline of the shape. | |

* Of course, while this is the most straightforward way of generating | |

* SDF, we use various optimizations in our implementation. See the | |

* `sdf_generate_*' functions in this file for all details. | |

* | |

* The optimization currently used by default is subdivision; see | |

* function `sdf_generate_subdivision` for more. | |

* | |

* Also, to see how we compute the shortest distance from a point to | |

* each type of edge, check out the `get_min_distance_*' functions. | |

* | |

*/ | |

/************************************************************************** | |

* | |

* The macro FT_COMPONENT is used in trace mode. It is an implicit | |

* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log | |

* messages during execution. | |

*/ | |

#undef FT_COMPONENT | |

#define FT_COMPONENT sdf | |

/************************************************************************** | |

* | |

* definitions | |

* | |

*/ | |

/* | |

* If set to 1, the rasterizer uses Newton-Raphson's method for finding | |

* the shortest distance from a point to a conic curve. | |

* | |

* If set to 0, an analytical method gets used instead, which computes the | |

* roots of a cubic polynomial to find the shortest distance. However, | |

* the analytical method can currently underflow; we thus use Newton's | |

* method by default. | |

*/ | |

#ifndef USE_NEWTON_FOR_CONIC | |

#define USE_NEWTON_FOR_CONIC 1 | |

#endif | |

/* | |

* The number of intervals a Bezier curve gets sampled and checked to find | |

* the shortest distance. | |

*/ | |

#define MAX_NEWTON_DIVISIONS 4 | |

/* | |

* The number of steps of Newton's iterations in each interval of the | |

* Bezier curve. Basically, we run Newton's approximation | |

* | |

* x -= Q(t) / Q'(t) | |

* | |

* for each division to get the shortest distance. | |

*/ | |

#define MAX_NEWTON_STEPS 4 | |

/* | |

* The epsilon distance (in 16.16 fractional units) used for corner | |

* resolving. If the difference of two distances is less than this value | |

* they will be checked for a corner if they are ambiguous. | |

*/ | |

#define CORNER_CHECK_EPSILON 32 | |

#if 0 | |

/* | |

* Coarse grid dimension. Will probably be removed in the future because | |

* coarse grid optimization is the slowest algorithm. | |

*/ | |

#define CG_DIMEN 8 | |

#endif | |

/************************************************************************** | |

* | |

* macros | |

* | |

*/ | |

#define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 ) | |

#define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \ | |

MUL_26D6( p.y, q.y ) ) | |

/************************************************************************** | |

* | |

* structures and enums | |

* | |

*/ | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_TRaster | |

* | |

* @Description: | |

* This struct is used in place of @FT_Raster and is stored within the | |

* internal FreeType renderer struct. While rasterizing it is passed to | |

* the @FT_Raster_RenderFunc function, which then can be used however we | |

* want. | |

* | |

* @Fields: | |

* memory :: | |

* Used internally to allocate intermediate memory while raterizing. | |

* | |

*/ | |

typedef struct SDF_TRaster_ | |

{ | |

FT_Memory memory; | |

} SDF_TRaster; | |

/************************************************************************** | |

* | |

* @Enum: | |

* SDF_Edge_Type | |

* | |

* @Description: | |

* Enumeration of all curve types present in fonts. | |

* | |

* @Fields: | |

* SDF_EDGE_UNDEFINED :: | |

* Undefined edge, simply used to initialize and detect errors. | |

* | |

* SDF_EDGE_LINE :: | |

* Line segment with start and end point. | |

* | |

* SDF_EDGE_CONIC :: | |

* A conic/quadratic Bezier curve with start, end, and one control | |

* point. | |

* | |

* SDF_EDGE_CUBIC :: | |

* A cubic Bezier curve with start, end, and two control points. | |

* | |

*/ | |

typedef enum SDF_Edge_Type_ | |

{ | |

SDF_EDGE_UNDEFINED = 0, | |

SDF_EDGE_LINE = 1, | |

SDF_EDGE_CONIC = 2, | |

SDF_EDGE_CUBIC = 3 | |

} SDF_Edge_Type; | |

/************************************************************************** | |

* | |

* @Enum: | |

* SDF_Contour_Orientation | |

* | |

* @Description: | |

* Enumeration of all orientation values of a contour. We determine the | |

* orientation by calculating the area covered by a contour. Contrary | |

* to values returned by @FT_Outline_Get_Orientation, | |

* `SDF_Contour_Orientation` is independent of the fill rule, which can | |

* be different for different font formats. | |

* | |

* @Fields: | |

* SDF_ORIENTATION_NONE :: | |

* Undefined orientation, used for initialization and error detection. | |

* | |

* SDF_ORIENTATION_CW :: | |

* Clockwise orientation (positive area covered). | |

* | |

* SDF_ORIENTATION_CCW :: | |

* Counter-clockwise orientation (negative area covered). | |

* | |

* @Note: | |

* See @FT_Outline_Get_Orientation for more details. | |

* | |

*/ | |

typedef enum SDF_Contour_Orientation_ | |

{ | |

SDF_ORIENTATION_NONE = 0, | |

SDF_ORIENTATION_CW = 1, | |

SDF_ORIENTATION_CCW = 2 | |

} SDF_Contour_Orientation; | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_Edge | |

* | |

* @Description: | |

* Represent an edge of a contour. | |

* | |

* @Fields: | |

* start_pos :: | |

* Start position of an edge. Valid for all types of edges. | |

* | |

* end_pos :: | |

* Etart position of an edge. Valid for all types of edges. | |

* | |

* control_a :: | |

* A control point of the edge. Valid only for `SDF_EDGE_CONIC` | |

* and `SDF_EDGE_CUBIC`. | |

* | |

* control_b :: | |

* Another control point of the edge. Valid only for | |

* `SDF_EDGE_CONIC`. | |

* | |

* edge_type :: | |

* Type of the edge, see @SDF_Edge_Type for all possible edge types. | |

* | |

* next :: | |

* Used to create a singly linked list, which can be interpreted | |

* as a contour. | |

* | |

*/ | |

typedef struct SDF_Edge_ | |

{ | |

FT_26D6_Vec start_pos; | |

FT_26D6_Vec end_pos; | |

FT_26D6_Vec control_a; | |

FT_26D6_Vec control_b; | |

SDF_Edge_Type edge_type; | |

struct SDF_Edge_* next; | |

} SDF_Edge; | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_Contour | |

* | |

* @Description: | |

* Represent a complete contour, which contains a list of edges. | |

* | |

* @Fields: | |

* last_pos :: | |

* Contains the value of `end_pos' of the last edge in the list of | |

* edges. Useful while decomposing the outline with | |

* @FT_Outline_Decompose. | |

* | |

* edges :: | |

* Linked list of all the edges that make the contour. | |

* | |

* next :: | |

* Used to create a singly linked list, which can be interpreted as a | |

* complete shape or @FT_Outline. | |

* | |

*/ | |

typedef struct SDF_Contour_ | |

{ | |

FT_26D6_Vec last_pos; | |

SDF_Edge* edges; | |

struct SDF_Contour_* next; | |

} SDF_Contour; | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_Shape | |

* | |

* @Description: | |

* Represent a complete shape, which is the decomposition of | |

* @FT_Outline. | |

* | |

* @Fields: | |

* memory :: | |

* Used internally to allocate memory. | |

* | |

* contours :: | |

* Linked list of all the contours that make the shape. | |

* | |

*/ | |

typedef struct SDF_Shape_ | |

{ | |

FT_Memory memory; | |

SDF_Contour* contours; | |

} SDF_Shape; | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_Signed_Distance | |

* | |

* @Description: | |

* Represent signed distance of a point, i.e., the distance of the edge | |

* nearest to the point. | |

* | |

* @Fields: | |

* distance :: | |

* Distance of the point from the nearest edge. Can be squared or | |

* absolute depending on the `USE_SQUARED_DISTANCES` macro defined in | |

* file `ftsdfcommon.h`. | |

* | |

* cross :: | |

* Cross product of the shortest distance vector (i.e., the vector | |

* from the point to the nearest edge) and the direction of the edge | |

* at the nearest point. This is used to resolve ambiguities of | |

* `sign`. | |

* | |

* sign :: | |

* A value used to indicate whether the distance vector is outside or | |

* inside the contour corresponding to the edge. | |

* | |

* @Note: | |

* `sign` may or may not be correct, therefore it must be checked | |

* properly in case there is an ambiguity. | |

* | |

*/ | |

typedef struct SDF_Signed_Distance_ | |

{ | |

FT_16D16 distance; | |

FT_16D16 cross; | |

FT_Char sign; | |

} SDF_Signed_Distance; | |

/************************************************************************** | |

* | |

* @Struct: | |

* SDF_Params | |

* | |

* @Description: | |

* Yet another internal parameters required by the rasterizer. | |

* | |

* @Fields: | |

* orientation :: | |

* This is not the @SDF_Contour_Orientation value but @FT_Orientation, | |

* which determines whether clockwise-oriented outlines are to be | |

* filled or counter-clockwise-oriented ones. | |

* | |

* flip_sign :: | |

* If set to true, flip the sign. By default the points filled by the | |

* outline are positive. | |

* | |

* flip_y :: | |

* If set to true the output bitmap is upside-down. Can be useful | |

* because OpenGL and DirectX use different coordinate systems for | |

* textures. | |

* | |

* overload_sign :: | |

* In the subdivision and bounding box optimization, the default | |

* outside sign is taken as -1. This parameter can be used to modify | |

* that behaviour. For example, while generating SDF for a single | |

* counter-clockwise contour, the outside sign should be 1. | |

* | |

*/ | |

typedef struct SDF_Params_ | |

{ | |

FT_Orientation orientation; | |

FT_Bool flip_sign; | |

FT_Bool flip_y; | |

FT_Int overload_sign; | |

} SDF_Params; | |

/************************************************************************** | |

* | |

* constants, initializer, and destructor | |

* | |

*/ | |

static | |

const FT_Vector zero_vector = { 0, 0 }; | |

static | |

const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 }, | |

{ 0, 0 }, { 0, 0 }, | |

SDF_EDGE_UNDEFINED, NULL }; | |

static | |

const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL }; | |

static | |

const SDF_Shape null_shape = { NULL, NULL }; | |

static | |

const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 }; | |

/* Create a new @SDF_Edge on the heap and assigns the `edge` */ | |

/* pointer to the newly allocated memory. */ | |

static FT_Error | |

sdf_edge_new( FT_Memory memory, | |

SDF_Edge** edge ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

SDF_Edge* ptr = NULL; | |

if ( !memory || !edge ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( !FT_ALLOC( ptr, sizeof ( *ptr ) ) ) | |

{ | |

*ptr = null_edge; | |

*edge = ptr; | |

} | |

Exit: | |

return error; | |

} | |

/* Free the allocated `edge` variable. */ | |

static void | |

sdf_edge_done( FT_Memory memory, | |

SDF_Edge** edge ) | |

{ | |

if ( !memory || !edge || !*edge ) | |

return; | |

FT_FREE( *edge ); | |

} | |

/* Create a new @SDF_Contour on the heap and assign */ | |

/* the `contour` pointer to the newly allocated memory. */ | |

static FT_Error | |

sdf_contour_new( FT_Memory memory, | |

SDF_Contour** contour ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

SDF_Contour* ptr = NULL; | |

if ( !memory || !contour ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( !FT_ALLOC( ptr, sizeof ( *ptr ) ) ) | |

{ | |

*ptr = null_contour; | |

*contour = ptr; | |

} | |

Exit: | |

return error; | |

} | |

/* Free the allocated `contour` variable. */ | |

/* Also free the list of edges. */ | |

static void | |

sdf_contour_done( FT_Memory memory, | |

SDF_Contour** contour ) | |

{ | |

SDF_Edge* edges; | |

SDF_Edge* temp; | |

if ( !memory || !contour || !*contour ) | |

return; | |

edges = (*contour)->edges; | |

/* release all edges */ | |

while ( edges ) | |

{ | |

temp = edges; | |

edges = edges->next; | |

sdf_edge_done( memory, &temp ); | |

} | |

FT_FREE( *contour ); | |

} | |

/* Create a new @SDF_Shape on the heap and assign */ | |

/* the `shape` pointer to the newly allocated memory. */ | |

static FT_Error | |

sdf_shape_new( FT_Memory memory, | |

SDF_Shape** shape ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

SDF_Shape* ptr = NULL; | |

if ( !memory || !shape ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( !FT_ALLOC( ptr, sizeof ( *ptr ) ) ) | |

{ | |

*ptr = null_shape; | |

ptr->memory = memory; | |

*shape = ptr; | |

} | |

Exit: | |

return error; | |

} | |

/* Free the allocated `shape` variable. */ | |

/* Also free the list of contours. */ | |

static void | |

sdf_shape_done( SDF_Shape** shape ) | |

{ | |

FT_Memory memory; | |

SDF_Contour* contours; | |

SDF_Contour* temp; | |

if ( !shape || !*shape ) | |

return; | |

memory = (*shape)->memory; | |

contours = (*shape)->contours; | |

if ( !memory ) | |

return; | |

/* release all contours */ | |

while ( contours ) | |

{ | |

temp = contours; | |

contours = contours->next; | |

sdf_contour_done( memory, &temp ); | |

} | |

/* release the allocated shape struct */ | |

FT_FREE( *shape ); | |

} | |

/************************************************************************** | |

* | |

* shape decomposition functions | |

* | |

*/ | |

/* This function is called when starting a new contour at `to`, */ | |

/* which gets added to the shape's list. */ | |

static FT_Error | |

sdf_move_to( const FT_26D6_Vec* to, | |

void* user ) | |

{ | |

SDF_Shape* shape = ( SDF_Shape* )user; | |

SDF_Contour* contour = NULL; | |

FT_Error error = FT_Err_Ok; | |

FT_Memory memory = shape->memory; | |

if ( !to || !user ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

FT_CALL( sdf_contour_new( memory, &contour ) ); | |

contour->last_pos = *to; | |

contour->next = shape->contours; | |

shape->contours = contour; | |

Exit: | |

return error; | |

} | |

/* This function is called when there is a line in the */ | |

/* contour. The line starts at the previous edge point and */ | |

/* stops at `to`. */ | |

static FT_Error | |

sdf_line_to( const FT_26D6_Vec* to, | |

void* user ) | |

{ | |

SDF_Shape* shape = ( SDF_Shape* )user; | |

SDF_Edge* edge = NULL; | |

SDF_Contour* contour = NULL; | |

FT_Error error = FT_Err_Ok; | |

FT_Memory memory = shape->memory; | |

if ( !to || !user ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

contour = shape->contours; | |

if ( contour->last_pos.x == to->x && | |

contour->last_pos.y == to->y ) | |

goto Exit; | |

FT_CALL( sdf_edge_new( memory, &edge ) ); | |

edge->edge_type = SDF_EDGE_LINE; | |

edge->start_pos = contour->last_pos; | |

edge->end_pos = *to; | |

edge->next = contour->edges; | |

contour->edges = edge; | |

contour->last_pos = *to; | |

Exit: | |

return error; | |

} | |

/* This function is called when there is a conic Bezier curve */ | |

/* in the contour. The curve starts at the previous edge point */ | |

/* and stops at `to`, with control point `control_1`. */ | |

static FT_Error | |

sdf_conic_to( const FT_26D6_Vec* control_1, | |

const FT_26D6_Vec* to, | |

void* user ) | |

{ | |

SDF_Shape* shape = ( SDF_Shape* )user; | |

SDF_Edge* edge = NULL; | |

SDF_Contour* contour = NULL; | |

FT_Error error = FT_Err_Ok; | |

FT_Memory memory = shape->memory; | |

if ( !control_1 || !to || !user ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

contour = shape->contours; | |

FT_CALL( sdf_edge_new( memory, &edge ) ); | |

edge->edge_type = SDF_EDGE_CONIC; | |

edge->start_pos = contour->last_pos; | |

edge->control_a = *control_1; | |

edge->end_pos = *to; | |

edge->next = contour->edges; | |

contour->edges = edge; | |

contour->last_pos = *to; | |

Exit: | |

return error; | |

} | |

/* This function is called when there is a cubic Bezier curve */ | |

/* in the contour. The curve starts at the previous edge point */ | |

/* and stops at `to`, with two control points `control_1` and */ | |

/* `control_2`. */ | |

static FT_Error | |

sdf_cubic_to( const FT_26D6_Vec* control_1, | |

const FT_26D6_Vec* control_2, | |

const FT_26D6_Vec* to, | |

void* user ) | |

{ | |

SDF_Shape* shape = ( SDF_Shape* )user; | |

SDF_Edge* edge = NULL; | |

SDF_Contour* contour = NULL; | |

FT_Error error = FT_Err_Ok; | |

FT_Memory memory = shape->memory; | |

if ( !control_2 || !control_1 || !to || !user ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

contour = shape->contours; | |

FT_CALL( sdf_edge_new( memory, &edge ) ); | |

edge->edge_type = SDF_EDGE_CUBIC; | |

edge->start_pos = contour->last_pos; | |

edge->control_a = *control_1; | |

edge->control_b = *control_2; | |

edge->end_pos = *to; | |

edge->next = contour->edges; | |

contour->edges = edge; | |

contour->last_pos = *to; | |

Exit: | |

return error; | |

} | |

/* Construct the structure to hold all four outline */ | |

/* decomposition functions. */ | |

FT_DEFINE_OUTLINE_FUNCS( | |

sdf_decompose_funcs, | |

(FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */ | |

(FT_Outline_LineTo_Func) sdf_line_to, /* line_to */ | |

(FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */ | |

(FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */ | |

0, /* shift */ | |

0 /* delta */ | |

) | |

/* Decompose `outline` and put it into the `shape` structure. */ | |

static FT_Error | |

sdf_outline_decompose( FT_Outline* outline, | |

SDF_Shape* shape ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

if ( !outline || !shape ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

error = FT_Outline_Decompose( outline, | |

&sdf_decompose_funcs, | |

(void*)shape ); | |

Exit: | |

return error; | |

} | |

/************************************************************************** | |

* | |

* utility functions | |

* | |

*/ | |

/* Return the control box of a edge. The control box is a rectangle */ | |

/* in which all the control points can fit tightly. */ | |

static FT_CBox | |

get_control_box( SDF_Edge edge ) | |

{ | |

FT_CBox cbox; | |

FT_Bool is_set = 0; | |

switch ( edge.edge_type ) | |

{ | |

case SDF_EDGE_CUBIC: | |

cbox.xMin = edge.control_b.x; | |

cbox.xMax = edge.control_b.x; | |

cbox.yMin = edge.control_b.y; | |

cbox.yMax = edge.control_b.y; | |

is_set = 1; | |

/* fall through */ | |

case SDF_EDGE_CONIC: | |

if ( is_set ) | |

{ | |

cbox.xMin = edge.control_a.x < cbox.xMin | |

? edge.control_a.x | |

: cbox.xMin; | |

cbox.xMax = edge.control_a.x > cbox.xMax | |

? edge.control_a.x | |

: cbox.xMax; | |

cbox.yMin = edge.control_a.y < cbox.yMin | |

? edge.control_a.y | |

: cbox.yMin; | |

cbox.yMax = edge.control_a.y > cbox.yMax | |

? edge.control_a.y | |

: cbox.yMax; | |

} | |

else | |

{ | |

cbox.xMin = edge.control_a.x; | |

cbox.xMax = edge.control_a.x; | |

cbox.yMin = edge.control_a.y; | |

cbox.yMax = edge.control_a.y; | |

is_set = 1; | |

} | |

/* fall through */ | |

case SDF_EDGE_LINE: | |

if ( is_set ) | |

{ | |

cbox.xMin = edge.start_pos.x < cbox.xMin | |

? edge.start_pos.x | |

: cbox.xMin; | |

cbox.xMax = edge.start_pos.x > cbox.xMax | |

? edge.start_pos.x | |

: cbox.xMax; | |

cbox.yMin = edge.start_pos.y < cbox.yMin | |

? edge.start_pos.y | |

: cbox.yMin; | |

cbox.yMax = edge.start_pos.y > cbox.yMax | |

? edge.start_pos.y | |

: cbox.yMax; | |

} | |

else | |

{ | |

cbox.xMin = edge.start_pos.x; | |

cbox.xMax = edge.start_pos.x; | |

cbox.yMin = edge.start_pos.y; | |

cbox.yMax = edge.start_pos.y; | |

} | |

cbox.xMin = edge.end_pos.x < cbox.xMin | |

? edge.end_pos.x | |

: cbox.xMin; | |

cbox.xMax = edge.end_pos.x > cbox.xMax | |

? edge.end_pos.x | |

: cbox.xMax; | |

cbox.yMin = edge.end_pos.y < cbox.yMin | |

? edge.end_pos.y | |

: cbox.yMin; | |

cbox.yMax = edge.end_pos.y > cbox.yMax | |

? edge.end_pos.y | |

: cbox.yMax; | |

break; | |

default: | |

break; | |

} | |

return cbox; | |

} | |

/* Return orientation of a single contour. */ | |

/* Note that the orientation is independent of the fill rule! */ | |

/* So, for TTF a clockwise-oriented contour has to be filled */ | |

/* and the opposite for OTF fonts. */ | |

static SDF_Contour_Orientation | |

get_contour_orientation ( SDF_Contour* contour ) | |

{ | |

SDF_Edge* head = NULL; | |

FT_26D6 area = 0; | |

/* return none if invalid parameters */ | |

if ( !contour || !contour->edges ) | |

return SDF_ORIENTATION_NONE; | |

head = contour->edges; | |

/* Calculate the area of the control box for all edges. */ | |

while ( head ) | |

{ | |

switch ( head->edge_type ) | |

{ | |

case SDF_EDGE_LINE: | |

area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ), | |

( head->end_pos.y + head->start_pos.y ) ); | |

break; | |

case SDF_EDGE_CONIC: | |

area += MUL_26D6( head->control_a.x - head->start_pos.x, | |

head->control_a.y + head->start_pos.y ); | |

area += MUL_26D6( head->end_pos.x - head->control_a.x, | |

head->end_pos.y + head->control_a.y ); | |

break; | |

case SDF_EDGE_CUBIC: | |

area += MUL_26D6( head->control_a.x - head->start_pos.x, | |

head->control_a.y + head->start_pos.y ); | |

area += MUL_26D6( head->control_b.x - head->control_a.x, | |

head->control_b.y + head->control_a.y ); | |

area += MUL_26D6( head->end_pos.x - head->control_b.x, | |

head->end_pos.y + head->control_b.y ); | |

break; | |

default: | |

return SDF_ORIENTATION_NONE; | |

} | |

head = head->next; | |

} | |

/* Clockwise contours cover a positive area, and counter-clockwise */ | |

/* contours cover a negative area. */ | |

if ( area > 0 ) | |

return SDF_ORIENTATION_CW; | |

else | |

return SDF_ORIENTATION_CCW; | |

} | |

/* This function is exactly the same as the one */ | |

/* in the smooth renderer. It splits a conic */ | |

/* into two conics exactly half way at t = 0.5. */ | |

static void | |

split_conic( FT_26D6_Vec* base ) | |

{ | |

FT_26D6 a, b; | |

base[4].x = base[2].x; | |

a = base[0].x + base[1].x; | |

b = base[1].x + base[2].x; | |

base[3].x = b / 2; | |

base[2].x = ( a + b ) / 4; | |

base[1].x = a / 2; | |

base[4].y = base[2].y; | |

a = base[0].y + base[1].y; | |

b = base[1].y + base[2].y; | |

base[3].y = b / 2; | |

base[2].y = ( a + b ) / 4; | |

base[1].y = a / 2; | |

} | |

/* This function is exactly the same as the one */ | |

/* in the smooth renderer. It splits a cubic */ | |

/* into two cubics exactly half way at t = 0.5. */ | |

static void | |

split_cubic( FT_26D6_Vec* base ) | |

{ | |

FT_26D6 a, b, c; | |

base[6].x = base[3].x; | |

a = base[0].x + base[1].x; | |

b = base[1].x + base[2].x; | |

c = base[2].x + base[3].x; | |

base[5].x = c / 2; | |

c += b; | |

base[4].x = c / 4; | |

base[1].x = a / 2; | |

a += b; | |

base[2].x = a / 4; | |

base[3].x = ( a + c ) / 8; | |

base[6].y = base[3].y; | |

a = base[0].y + base[1].y; | |

b = base[1].y + base[2].y; | |

c = base[2].y + base[3].y; | |

base[5].y = c / 2; | |

c += b; | |

base[4].y = c / 4; | |

base[1].y = a / 2; | |

a += b; | |

base[2].y = a / 4; | |

base[3].y = ( a + c ) / 8; | |

} | |

/* Split a conic Bezier curve into a number of lines */ | |

/* and add them to `out'. */ | |

/* */ | |

/* This function uses recursion; we thus need */ | |

/* parameter `max_splits' for stopping. */ | |

static FT_Error | |

split_sdf_conic( FT_Memory memory, | |

FT_26D6_Vec* control_points, | |

FT_Int max_splits, | |

SDF_Edge** out ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

FT_26D6_Vec cpos[5]; | |

SDF_Edge* left,* right; | |

if ( !memory || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

/* split conic outline */ | |

cpos[0] = control_points[0]; | |

cpos[1] = control_points[1]; | |

cpos[2] = control_points[2]; | |

split_conic( cpos ); | |

/* If max number of splits is done */ | |

/* then stop and add the lines to */ | |

/* the list. */ | |

if ( max_splits <= 2 ) | |

goto Append; | |

/* Otherwise keep splitting. */ | |

FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) ); | |

FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) ); | |

/* [NOTE]: This is not an efficient way of */ | |

/* splitting the curve. Check the deviation */ | |

/* instead and stop if the deviation is less */ | |

/* than a pixel. */ | |

goto Exit; | |

Append: | |

/* Do allocation and add the lines to the list. */ | |

FT_CALL( sdf_edge_new( memory, &left ) ); | |

FT_CALL( sdf_edge_new( memory, &right ) ); | |

left->start_pos = cpos[0]; | |

left->end_pos = cpos[2]; | |

left->edge_type = SDF_EDGE_LINE; | |

right->start_pos = cpos[2]; | |

right->end_pos = cpos[4]; | |

right->edge_type = SDF_EDGE_LINE; | |

left->next = right; | |

right->next = (*out); | |

*out = left; | |

Exit: | |

return error; | |

} | |

/* Split a cubic Bezier curve into a number of lines */ | |

/* and add them to `out`. */ | |

/* */ | |

/* This function uses recursion; we thus need */ | |

/* parameter `max_splits' for stopping. */ | |

static FT_Error | |

split_sdf_cubic( FT_Memory memory, | |

FT_26D6_Vec* control_points, | |

FT_Int max_splits, | |

SDF_Edge** out ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

FT_26D6_Vec cpos[7]; | |

SDF_Edge* left,* right; | |

if ( !memory || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

/* split the conic */ | |

cpos[0] = control_points[0]; | |

cpos[1] = control_points[1]; | |

cpos[2] = control_points[2]; | |

cpos[3] = control_points[3]; | |

split_cubic( cpos ); | |

/* If max number of splits is done */ | |

/* then stop and add the lines to */ | |

/* the list. */ | |

if ( max_splits <= 2 ) | |

goto Append; | |

/* Otherwise keep splitting. */ | |

FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) ); | |

FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) ); | |

/* [NOTE]: This is not an efficient way of */ | |

/* splitting the curve. Check the deviation */ | |

/* instead and stop if the deviation is less */ | |

/* than a pixel. */ | |

goto Exit; | |

Append: | |

/* Do allocation and add the lines to the list. */ | |

FT_CALL( sdf_edge_new( memory, &left) ); | |

FT_CALL( sdf_edge_new( memory, &right) ); | |

left->start_pos = cpos[0]; | |

left->end_pos = cpos[3]; | |

left->edge_type = SDF_EDGE_LINE; | |

right->start_pos = cpos[3]; | |

right->end_pos = cpos[6]; | |

right->edge_type = SDF_EDGE_LINE; | |

left->next = right; | |

right->next = (*out); | |

*out = left; | |

Exit: | |

return error; | |

} | |

/* Subdivide an entire shape into line segments */ | |

/* such that it doesn't look visually different */ | |

/* from the original curve. */ | |

static FT_Error | |

split_sdf_shape( SDF_Shape* shape ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

FT_Memory memory; | |

SDF_Contour* contours; | |

SDF_Contour* new_contours = NULL; | |

if ( !shape || !shape->memory ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

contours = shape->contours; | |

memory = shape->memory; | |

/* for each contour */ | |

while ( contours ) | |

{ | |

SDF_Edge* edges = contours->edges; | |

SDF_Edge* new_edges = NULL; | |

SDF_Contour* tempc; | |

/* for each edge */ | |

while ( edges ) | |

{ | |

SDF_Edge* edge = edges; | |

SDF_Edge* temp; | |

switch ( edge->edge_type ) | |

{ | |

case SDF_EDGE_LINE: | |

/* Just create a duplicate edge in case */ | |

/* it is a line. We can use the same edge. */ | |

FT_CALL( sdf_edge_new( memory, &temp ) ); | |

ft_memcpy( temp, edge, sizeof ( *edge ) ); | |

temp->next = new_edges; | |

new_edges = temp; | |

break; | |

case SDF_EDGE_CONIC: | |

/* Subdivide the curve and add it to the list. */ | |

{ | |

FT_26D6_Vec ctrls[3]; | |

ctrls[0] = edge->start_pos; | |

ctrls[1] = edge->control_a; | |

ctrls[2] = edge->end_pos; | |

error = split_sdf_conic( memory, ctrls, 32, &new_edges ); | |

} | |

break; | |

case SDF_EDGE_CUBIC: | |

/* Subdivide the curve and add it to the list. */ | |

{ | |

FT_26D6_Vec ctrls[4]; | |

ctrls[0] = edge->start_pos; | |

ctrls[1] = edge->control_a; | |

ctrls[2] = edge->control_b; | |

ctrls[3] = edge->end_pos; | |

error = split_sdf_cubic( memory, ctrls, 32, &new_edges ); | |

} | |

break; | |

default: | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

edges = edges->next; | |

} | |

/* add to the contours list */ | |

FT_CALL( sdf_contour_new( memory, &tempc ) ); | |

tempc->next = new_contours; | |

tempc->edges = new_edges; | |

new_contours = tempc; | |

new_edges = NULL; | |

/* deallocate the contour */ | |

tempc = contours; | |

contours = contours->next; | |

sdf_contour_done( memory, &tempc ); | |

} | |

shape->contours = new_contours; | |

Exit: | |

return error; | |

} | |

/************************************************************************** | |

* | |

* for debugging | |

* | |

*/ | |

#ifdef FT_DEBUG_LEVEL_TRACE | |

static void | |

sdf_shape_dump( SDF_Shape* shape ) | |

{ | |

FT_UInt num_contours = 0; | |

FT_UInt total_edges = 0; | |

FT_UInt total_lines = 0; | |

FT_UInt total_conic = 0; | |

FT_UInt total_cubic = 0; | |

SDF_Contour* contour_list; | |

if ( !shape ) | |

{ | |

FT_TRACE5(( "sdf_shape_dump: null shape\n" )); | |

return; | |

} | |

contour_list = shape->contours; | |

FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" )); | |

while ( contour_list ) | |

{ | |

FT_UInt num_edges = 0; | |

SDF_Edge* edge_list; | |

SDF_Contour* contour = contour_list; | |

FT_TRACE5(( " Contour %d\n", num_contours )); | |

edge_list = contour->edges; | |

while ( edge_list ) | |

{ | |

SDF_Edge* edge = edge_list; | |

FT_TRACE5(( " %3d: ", num_edges )); | |

switch ( edge->edge_type ) | |

{ | |

case SDF_EDGE_LINE: | |

FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n", | |

edge->start_pos.x, edge->start_pos.y, | |

edge->end_pos.x, edge->end_pos.y )); | |

total_lines++; | |

break; | |

case SDF_EDGE_CONIC: | |

FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n", | |

edge->start_pos.x, edge->start_pos.y, | |

edge->control_a.x, edge->control_a.y, | |

edge->end_pos.x, edge->end_pos.y )); | |

total_conic++; | |

break; | |

case SDF_EDGE_CUBIC: | |

FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)" | |

" .. (%ld, %ld) .. (%ld %ld)\n", | |

edge->start_pos.x, edge->start_pos.y, | |

edge->control_a.x, edge->control_a.y, | |

edge->control_b.x, edge->control_b.y, | |

edge->end_pos.x, edge->end_pos.y )); | |

total_cubic++; | |

break; | |

default: | |

break; | |

} | |

num_edges++; | |

total_edges++; | |

edge_list = edge_list->next; | |

} | |

num_contours++; | |

contour_list = contour_list->next; | |

} | |

FT_TRACE5(( "\n" )); | |

FT_TRACE5(( " total number of contours = %d\n", num_contours )); | |

FT_TRACE5(( " total number of edges = %d\n", total_edges )); | |

FT_TRACE5(( " |__lines = %d\n", total_lines )); | |

FT_TRACE5(( " |__conic = %d\n", total_conic )); | |

FT_TRACE5(( " |__cubic = %d\n", total_cubic )); | |

} | |

#endif /* FT_DEBUG_LEVEL_TRACE */ | |

/************************************************************************** | |

* | |

* math functions | |

* | |

*/ | |

#if !USE_NEWTON_FOR_CONIC | |

/* [NOTE]: All the functions below down until rasterizer */ | |

/* can be avoided if we decide to subdivide the */ | |

/* curve into lines. */ | |

/* This function uses Newton's iteration to find */ | |

/* the cube root of a fixed-point integer. */ | |

static FT_16D16 | |

cube_root( FT_16D16 val ) | |

{ | |

/* [IMPORTANT]: This function is not good as it may */ | |

/* not break, so use a lookup table instead. Or we */ | |

/* can use an algorithm similar to `square_root`. */ | |

FT_Int v, g, c; | |

if ( val == 0 || | |

val == -FT_INT_16D16( 1 ) || | |

val == FT_INT_16D16( 1 ) ) | |

return val; | |

v = val < 0 ? -val : val; | |

g = square_root( v ); | |

c = 0; | |

while ( 1 ) | |

{ | |

c = FT_MulFix( FT_MulFix( g, g ), g ) - v; | |

c = FT_DivFix( c, 3 * FT_MulFix( g, g ) ); | |

g -= c; | |

if ( ( c < 0 ? -c : c ) < 30 ) | |

break; | |

} | |

return val < 0 ? -g : g; | |

} | |

/* Calculate the perpendicular by using '1 - base^2'. */ | |

/* Then use arctan to compute the angle. */ | |

static FT_16D16 | |

arc_cos( FT_16D16 val ) | |

{ | |

FT_16D16 p; | |

FT_16D16 b = val; | |

FT_16D16 one = FT_INT_16D16( 1 ); | |

if ( b > one ) | |

b = one; | |

if ( b < -one ) | |

b = -one; | |

p = one - FT_MulFix( b, b ); | |

p = square_root( p ); | |

return FT_Atan2( b, p ); | |

} | |

/* Compute roots of a quadratic polynomial, assign them to `out`, */ | |

/* and return number of real roots. */ | |

/* */ | |

/* The procedure can be found at */ | |

/* */ | |

/* https://mathworld.wolfram.com/QuadraticFormula.html */ | |

static FT_UShort | |

solve_quadratic_equation( FT_26D6 a, | |

FT_26D6 b, | |

FT_26D6 c, | |

FT_16D16 out[2] ) | |

{ | |

FT_16D16 discriminant = 0; | |

a = FT_26D6_16D16( a ); | |

b = FT_26D6_16D16( b ); | |

c = FT_26D6_16D16( c ); | |

if ( a == 0 ) | |

{ | |

if ( b == 0 ) | |

return 0; | |

else | |

{ | |

out[0] = FT_DivFix( -c, b ); | |

return 1; | |

} | |

} | |

discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c ); | |

if ( discriminant < 0 ) | |

return 0; | |

else if ( discriminant == 0 ) | |

{ | |

out[0] = FT_DivFix( -b, 2 * a ); | |

return 1; | |

} | |

else | |

{ | |

discriminant = square_root( discriminant ); | |

out[0] = FT_DivFix( -b + discriminant, 2 * a ); | |

out[1] = FT_DivFix( -b - discriminant, 2 * a ); | |

return 2; | |

} | |

} | |

/* Compute roots of a cubic polynomial, assign them to `out`, */ | |

/* and return number of real roots. */ | |

/* */ | |

/* The procedure can be found at */ | |

/* */ | |

/* https://mathworld.wolfram.com/CubicFormula.html */ | |

static FT_UShort | |

solve_cubic_equation( FT_26D6 a, | |

FT_26D6 b, | |

FT_26D6 c, | |

FT_26D6 d, | |

FT_16D16 out[3] ) | |

{ | |

FT_16D16 q = 0; /* intermediate */ | |

FT_16D16 r = 0; /* intermediate */ | |

FT_16D16 a2 = b; /* x^2 coefficients */ | |

FT_16D16 a1 = c; /* x coefficients */ | |

FT_16D16 a0 = d; /* constant */ | |

FT_16D16 q3 = 0; | |

FT_16D16 r2 = 0; | |

FT_16D16 a23 = 0; | |

FT_16D16 a22 = 0; | |

FT_16D16 a1x2 = 0; | |

/* cutoff value for `a` to be a cubic, otherwise solve quadratic */ | |

if ( a == 0 || FT_ABS( a ) < 16 ) | |

return solve_quadratic_equation( b, c, d, out ); | |

if ( d == 0 ) | |

{ | |

out[0] = 0; | |

return solve_quadratic_equation( a, b, c, out + 1 ) + 1; | |

} | |

/* normalize the coefficients; this also makes them 16.16 */ | |

a2 = FT_DivFix( a2, a ); | |

a1 = FT_DivFix( a1, a ); | |

a0 = FT_DivFix( a0, a ); | |

/* compute intermediates */ | |

a1x2 = FT_MulFix( a1, a2 ); | |

a22 = FT_MulFix( a2, a2 ); | |

a23 = FT_MulFix( a22, a2 ); | |

q = ( 3 * a1 - a22 ) / 9; | |

r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54; | |

/* [BUG]: `q3` and `r2` still cause underflow. */ | |

q3 = FT_MulFix( q, q ); | |

q3 = FT_MulFix( q3, q ); | |

r2 = FT_MulFix( r, r ); | |

if ( q3 < 0 && r2 < -q3 ) | |

{ | |

FT_16D16 t = 0; | |

q3 = square_root( -q3 ); | |

t = FT_DivFix( r, q3 ); | |

if ( t > ( 1 << 16 ) ) | |

t = ( 1 << 16 ); | |

if ( t < -( 1 << 16 ) ) | |

t = -( 1 << 16 ); | |

t = arc_cos( t ); | |

a2 /= 3; | |

q = 2 * square_root( -q ); | |

out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2; | |

out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2; | |

out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2; | |

return 3; | |

} | |

else if ( r2 == -q3 ) | |

{ | |

FT_16D16 s = 0; | |

s = cube_root( r ); | |

a2 /= -3; | |

out[0] = a2 + ( 2 * s ); | |

out[1] = a2 - s; | |

return 2; | |

} | |

else | |

{ | |

FT_16D16 s = 0; | |

FT_16D16 t = 0; | |

FT_16D16 dis = 0; | |

if ( q3 == 0 ) | |

dis = FT_ABS( r ); | |

else | |

dis = square_root( q3 + r2 ); | |

s = cube_root( r + dis ); | |

t = cube_root( r - dis ); | |

a2 /= -3; | |

out[0] = ( a2 + ( s + t ) ); | |

return 1; | |

} | |

} | |

#endif /* !USE_NEWTON_FOR_CONIC */ | |

/*************************************************************************/ | |

/*************************************************************************/ | |

/** **/ | |

/** RASTERIZER **/ | |

/** **/ | |

/*************************************************************************/ | |

/*************************************************************************/ | |

/************************************************************************** | |

* | |

* @Function: | |

* resolve_corner | |

* | |

* @Description: | |

* At some places on the grid two edges can give opposite directions; | |

* this happens when the closest point is on one of the endpoint. In | |

* that case we need to check the proper sign. | |

* | |

* This can be visualized by an example: | |

* | |

* ``` | |

* x | |

* | |

* o | |

* ^ \ | |

* / \ | |

* / \ | |

* (a) / \ (b) | |

* / \ | |

* / \ | |

* / v | |

* ``` | |

* | |

* Suppose `x` is the point whose shortest distance from an arbitrary | |

* contour we want to find out. It is clear that `o` is the nearest | |

* point on the contour. Now to determine the sign we do a cross | |

* product of the shortest distance vector and the edge direction, i.e., | |

* | |

* ``` | |

* => sign = cross(x - o, direction(a)) | |

* ``` | |

* | |

* Using the right hand thumb rule we can see that the sign will be | |

* positive. | |

* | |

* If we use `b', however, we have | |

* | |

* ``` | |

* => sign = cross(x - o, direction(b)) | |

* ``` | |

* | |

* In this case the sign will be negative. To determine the correct | |

* sign we thus divide the plane in two halves and check which plane the | |

* point lies in. | |

* | |

* ``` | |

* | | |

* x | | |

* | | |

* o | |

* ^|\ | |

* / | \ | |

* / | \ | |

* (a) / | \ (b) | |

* / | \ | |

* / \ | |

* / v | |

* ``` | |

* | |

* We can see that `x` lies in the plane of `a`, so we take the sign | |

* determined by `a`. This test can be easily done by calculating the | |

* orthogonality and taking the greater one. | |

* | |

* The orthogonality is simply the sinus of the two vectors (i.e., | |

* x - o) and the corresponding direction. We efficiently pre-compute | |

* the orthogonality with the corresponding `get_min_distance_*` | |

* functions. | |

* | |

* @Input: | |

* sdf1 :: | |

* First signed distance (can be any of `a` or `b`). | |

* | |

* sdf1 :: | |

* Second signed distance (can be any of `a` or `b`). | |

* | |

* @Return: | |

* The correct signed distance, which is computed by using the above | |

* algorithm. | |

* | |

* @Note: | |

* The function does not care about the actual distance, it simply | |

* returns the signed distance which has a larger cross product. As a | |

* consequence, this function should not be used if the two distances | |

* are fairly apart. In that case simply use the signed distance with | |

* a shorter absolute distance. | |

* | |

*/ | |

static SDF_Signed_Distance | |

resolve_corner( SDF_Signed_Distance sdf1, | |

SDF_Signed_Distance sdf2 ) | |

{ | |

return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2; | |

} | |

/************************************************************************** | |

* | |

* @Function: | |

* get_min_distance_line | |

* | |

* @Description: | |

* Find the shortest distance from the `line` segment to a given `point` | |

* and assign it to `out`. Use it for line segments only. | |

* | |

* @Input: | |

* line :: | |

* The line segment to which the shortest distance is to be computed. | |

* | |

* point :: | |

* Point from which the shortest distance is to be computed. | |

* | |

* @Output: | |

* out :: | |

* Signed distance from `point` to `line`. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

* @Note: | |

* The `line' parameter must have an edge type of `SDF_EDGE_LINE`. | |

* | |

*/ | |

static FT_Error | |

get_min_distance_line( SDF_Edge* line, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

/* | |

* In order to calculate the shortest distance from a point to | |

* a line segment, we do the following. Let's assume that | |

* | |

* ``` | |

* a = start point of the line segment | |

* b = end point of the line segment | |

* p = point from which shortest distance is to be calculated | |

* ``` | |

* | |

* (1) Write the parametric equation of the line. | |

* | |

* ``` | |

* point_on_line = a + (b - a) * t (t is the factor) | |

* ``` | |

* | |

* (2) Find the projection of point `p` on the line. The projection | |

* will be perpendicular to the line, which allows us to get the | |

* solution by making the dot product zero. | |

* | |

* ``` | |

* (point_on_line - a) . (p - point_on_line) = 0 | |

* | |

* (point_on_line) | |

* (a) x-------o----------------x (b) | |

* |_| | |

* | | |

* | | |

* (p) | |

* ``` | |

* | |

* (3) Simplification of the above equation yields the factor of | |

* `point_on_line`: | |

* | |

* ``` | |

* t = ((p - a) . (b - a)) / |b - a|^2 | |

* ``` | |

* | |

* (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line` | |

* can be outside of the line segment: | |

* | |

* ``` | |

* (point_on_line) | |

* (a) x------------------------x (b) -----o--- | |

* |_| | |

* | | |

* | | |

* (p) | |

* ``` | |

* | |

* (5) Finally, the distance we are interested in is | |

* | |

* ``` | |

* |point_on_line - p| | |

* ``` | |

*/ | |

FT_Error error = FT_Err_Ok; | |

FT_Vector a; /* start position */ | |

FT_Vector b; /* end position */ | |

FT_Vector p; /* current point */ | |

FT_26D6_Vec line_segment; /* `b` - `a` */ | |

FT_26D6_Vec p_sub_a; /* `p` - `a` */ | |

FT_26D6 sq_line_length; /* squared length of `line_segment` */ | |

FT_16D16 factor; /* factor of the nearest point */ | |

FT_26D6 cross; /* used to determine sign */ | |

FT_16D16_Vec nearest_point; /* `point_on_line` */ | |

FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */ | |

if ( !line || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( line->edge_type != SDF_EDGE_LINE ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

a = line->start_pos; | |

b = line->end_pos; | |

p = point; | |

line_segment.x = b.x - a.x; | |

line_segment.y = b.y - a.y; | |

p_sub_a.x = p.x - a.x; | |

p_sub_a.y = p.y - a.y; | |

sq_line_length = ( line_segment.x * line_segment.x ) / 64 + | |

( line_segment.y * line_segment.y ) / 64; | |

/* currently factor is 26.6 */ | |

factor = ( p_sub_a.x * line_segment.x ) / 64 + | |

( p_sub_a.y * line_segment.y ) / 64; | |

/* now factor is 16.16 */ | |

factor = FT_DivFix( factor, sq_line_length ); | |

/* clamp the factor between 0.0 and 1.0 in fixed point */ | |

if ( factor > FT_INT_16D16( 1 ) ) | |

factor = FT_INT_16D16( 1 ); | |

if ( factor < 0 ) | |

factor = 0; | |

nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ), | |

factor ); | |

nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ), | |

factor ); | |

nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x; | |

nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y; | |

nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x ); | |

nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y ); | |

cross = FT_MulFix( nearest_vector.x, line_segment.y ) - | |

FT_MulFix( nearest_vector.y, line_segment.x ); | |

/* assign the output */ | |

out->sign = cross < 0 ? 1 : -1; | |

out->distance = VECTOR_LENGTH_16D16( nearest_vector ); | |

/* Instead of finding `cross` for checking corner we */ | |

/* directly set it here. This is more efficient */ | |

/* because if the distance is perpendicular we can */ | |

/* directly set it to 1. */ | |

if ( factor != 0 && factor != FT_INT_16D16( 1 ) ) | |

out->cross = FT_INT_16D16( 1 ); | |

else | |

{ | |

/* [OPTIMIZATION]: Pre-compute this direction. */ | |

/* If not perpendicular then compute `cross`. */ | |

FT_Vector_NormLen( &line_segment ); | |

FT_Vector_NormLen( &nearest_vector ); | |

out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) - | |

FT_MulFix( line_segment.y, nearest_vector.x ); | |

} | |

Exit: | |

return error; | |

} | |

/************************************************************************** | |

* | |

* @Function: | |

* get_min_distance_conic | |

* | |

* @Description: | |

* Find the shortest distance from the `conic` Bezier curve to a given | |

* `point` and assign it to `out`. Use it for conic/quadratic curves | |

* only. | |

* | |

* @Input: | |

* conic :: | |

* The conic Bezier curve to which the shortest distance is to be | |

* computed. | |

* | |

* point :: | |

* Point from which the shortest distance is to be computed. | |

* | |

* @Output: | |

* out :: | |

* Signed distance from `point` to `conic`. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

* @Note: | |

* The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`. | |

* | |

*/ | |

#if !USE_NEWTON_FOR_CONIC | |

/* | |

* The function uses an analytical method to find the shortest distance | |

* which is faster than the Newton-Raphson method, but has underflows at | |

* the moment. Use Newton's method if you can see artifacts in the SDF. | |

*/ | |

static FT_Error | |

get_min_distance_conic( SDF_Edge* conic, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

/* | |

* The procedure to find the shortest distance from a point to a | |

* quadratic Bezier curve is similar to the line segment algorithm. The | |

* shortest distance is perpendicular to the Bezier curve; the only | |

* difference from line is that there can be more than one | |

* perpendicular, and we also have to check the endpoints, because the | |

* perpendicular may not be the shortest. | |

* | |

* Let's assume that | |

* ``` | |

* p0 = first endpoint | |

* p1 = control point | |

* p2 = second endpoint | |

* p = point from which shortest distance is to be calculated | |

* ``` | |

* | |

* (1) The equation of a quadratic Bezier curve can be written as | |

* | |

* ``` | |

* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 | |

* ``` | |

* | |

* with `t` a factor in the range [0.0f, 1.0f]. This equation can | |

* be rewritten as | |

* | |

* ``` | |

* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 | |

* ``` | |

* | |

* With | |

* | |

* ``` | |

* A = p0 - 2p1 + p2 | |

* B = p1 - p0 | |

* ``` | |

* | |

* we have | |

* | |

* ``` | |

* B(t) = t^2 * A + 2t * B + p0 | |

* ``` | |

* | |

* (2) The derivative of the last equation above is | |

* | |

* ``` | |

* B'(t) = 2 *(tA + B) | |

* ``` | |

* | |

* (3) To find the shortest distance from `p` to `B(t)` we find the | |

* point on the curve at which the shortest distance vector (i.e., | |

* `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees. | |

* In other words, we make the dot product zero. | |

* | |

* ``` | |

* (B(t) - p) . (B'(t)) = 0 | |

* (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0 | |

* ``` | |

* | |

* After simplifying we get a cubic equation | |

* | |

* ``` | |

* at^3 + bt^2 + ct + d = 0 | |

* ``` | |

* | |

* with | |

* | |

* ``` | |

* a = A.A | |

* b = 3A.B | |

* c = 2B.B + A.p0 - A.p | |

* d = p0.B - p.B | |

* ``` | |

* | |

* (4) Now the roots of the equation can be computed using 'Cardano's | |

* Cubic formula'; we clamp the roots in the range [0.0f, 1.0f]. | |

* | |

* [note]: `B` and `B(t)` are different in the above equations. | |

*/ | |

FT_Error error = FT_Err_Ok; | |

FT_26D6_Vec aA, bB; /* A, B in the above comment */ | |

FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */ | |

FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ | |

FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ | |

FT_26D6_Vec p; /* `point` to which shortest distance */ | |

FT_26D6 a, b, c, d; /* cubic coefficients */ | |

FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */ | |

FT_16D16 min_factor; /* factor at `nearest_point` */ | |

FT_16D16 cross; /* to determine the sign */ | |

FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ | |

FT_UShort num_roots; /* number of real roots of cubic */ | |

FT_UShort i; | |

if ( !conic || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( conic->edge_type != SDF_EDGE_CONIC ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

p0 = conic->start_pos; | |

p1 = conic->control_a; | |

p2 = conic->end_pos; | |

p = point; | |

/* compute substitution coefficients */ | |

aA.x = p0.x - 2 * p1.x + p2.x; | |

aA.y = p0.y - 2 * p1.y + p2.y; | |

bB.x = p1.x - p0.x; | |

bB.y = p1.y - p0.y; | |

/* compute cubic coefficients */ | |

a = VEC_26D6_DOT( aA, aA ); | |

b = 3 * VEC_26D6_DOT( aA, bB ); | |

c = 2 * VEC_26D6_DOT( bB, bB ) + | |

VEC_26D6_DOT( aA, p0 ) - | |

VEC_26D6_DOT( aA, p ); | |

d = VEC_26D6_DOT( p0, bB ) - | |

VEC_26D6_DOT( p, bB ); | |

/* find the roots */ | |

num_roots = solve_cubic_equation( a, b, c, d, roots ); | |

if ( num_roots == 0 ) | |

{ | |

roots[0] = 0; | |

roots[1] = FT_INT_16D16( 1 ); | |

num_roots = 2; | |

} | |

/* [OPTIMIZATION]: Check the roots, clamp them and discard */ | |

/* duplicate roots. */ | |

/* convert these values to 16.16 for further computation */ | |

aA.x = FT_26D6_16D16( aA.x ); | |

aA.y = FT_26D6_16D16( aA.y ); | |

bB.x = FT_26D6_16D16( bB.x ); | |

bB.y = FT_26D6_16D16( bB.y ); | |

p0.x = FT_26D6_16D16( p0.x ); | |

p0.y = FT_26D6_16D16( p0.y ); | |

p.x = FT_26D6_16D16( p.x ); | |

p.y = FT_26D6_16D16( p.y ); | |

for ( i = 0; i < num_roots; i++ ) | |

{ | |

FT_16D16 t = roots[i]; | |

FT_16D16 t2 = 0; | |

FT_16D16 dist = 0; | |

FT_16D16_Vec curve_point; | |

FT_16D16_Vec dist_vector; | |

/* | |

* Ideally we should discard the roots which are outside the range | |

* [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad | |

* Esfahbod proved the following lemma. | |

* | |

* Lemma: | |

* | |

* (1) If the closest point on the curve [0, 1] is to the endpoint at | |

* `t` = 1 and the cubic has no real roots at `t` = 1 then the | |

* cubic must have a real root at some `t` > 1. | |

* | |

* (2) Similarly, if the closest point on the curve [0, 1] is to the | |

* endpoint at `t` = 0 and the cubic has no real roots at `t` = 0 | |

* then the cubic must have a real root at some `t` < 0. | |

* | |

* Now because of this lemma we only need to clamp the roots and that | |

* will take care of the endpoints. | |

* | |

* For more details see | |

* | |

* https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html | |

*/ | |

if ( t < 0 ) | |

t = 0; | |

if ( t > FT_INT_16D16( 1 ) ) | |

t = FT_INT_16D16( 1 ); | |

t2 = FT_MulFix( t, t ); | |

/* B(t) = t^2 * A + 2t * B + p0 - p */ | |

curve_point.x = FT_MulFix( aA.x, t2 ) + | |

2 * FT_MulFix( bB.x, t ) + p0.x; | |

curve_point.y = FT_MulFix( aA.y, t2 ) + | |

2 * FT_MulFix( bB.y, t ) + p0.y; | |

/* `curve_point` - `p` */ | |

dist_vector.x = curve_point.x - p.x; | |

dist_vector.y = curve_point.y - p.y; | |

dist = VECTOR_LENGTH_16D16( dist_vector ); | |

if ( dist < min ) | |

{ | |

min = dist; | |

nearest_point = curve_point; | |

min_factor = t; | |

} | |

} | |

/* B'(t) = 2 * (tA + B) */ | |

direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x; | |

direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y; | |

/* determine the sign */ | |

cross = FT_MulFix( nearest_point.x - p.x, direction.y ) - | |

FT_MulFix( nearest_point.y - p.y, direction.x ); | |

/* assign the values */ | |

out->distance = min; | |

out->sign = cross < 0 ? 1 : -1; | |

if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) | |

out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ | |

else | |

{ | |

/* convert to nearest vector */ | |

nearest_point.x -= FT_26D6_16D16( p.x ); | |

nearest_point.y -= FT_26D6_16D16( p.y ); | |

/* compute `cross` if not perpendicular */ | |

FT_Vector_NormLen( &direction ); | |

FT_Vector_NormLen( &nearest_point ); | |

out->cross = FT_MulFix( direction.x, nearest_point.y ) - | |

FT_MulFix( direction.y, nearest_point.x ); | |

} | |

Exit: | |

return error; | |

} | |

#else /* USE_NEWTON_FOR_CONIC */ | |

/* | |

* The function uses Newton's approximation to find the shortest distance, | |

* which is a bit slower than the analytical method but doesn't cause | |

* underflow. | |

*/ | |

static FT_Error | |

get_min_distance_conic( SDF_Edge* conic, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

/* | |

* This method uses Newton-Raphson's approximation to find the shortest | |

* distance from a point to a conic curve. It does not involve solving | |

* any cubic equation, that is why there is no risk of underflow. | |

* | |

* Let's assume that | |

* | |

* ``` | |

* p0 = first endpoint | |

* p1 = control point | |

* p3 = second endpoint | |

* p = point from which shortest distance is to be calculated | |

* ``` | |

* | |

* (1) The equation of a quadratic Bezier curve can be written as | |

* | |

* ``` | |

* B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 | |

* ``` | |

* | |

* with `t` the factor in the range [0.0f, 1.0f]. The above | |

* equation can be rewritten as | |

* | |

* ``` | |

* B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 | |

* ``` | |

* | |

* With | |

* | |

* ``` | |

* A = p0 - 2p1 + p2 | |

* B = 2 * (p1 - p0) | |

* ``` | |

* | |

* we have | |

* | |

* ``` | |

* B(t) = t^2 * A + t * B + p0 | |

* ``` | |

* | |

* (2) The derivative of the above equation is | |

* | |

* ``` | |

* B'(t) = 2t * A + B | |

* ``` | |

* | |

* (3) The second derivative of the above equation is | |

* | |

* ``` | |

* B''(t) = 2A | |

* ``` | |

* | |

* (4) The equation `P(t)` of the distance from point `p` to the curve | |

* can be written as | |

* | |

* ``` | |

* P(t) = t^2 * A + t^2 * B + p0 - p | |

* ``` | |

* | |

* With | |

* | |

* ``` | |

* C = p0 - p | |

* ``` | |

* | |

* we have | |

* | |

* ``` | |

* P(t) = t^2 * A + t * B + C | |

* ``` | |

* | |

* (5) Finally, the equation of the angle between `B(t)` and `P(t)` can | |

* be written as | |

* | |

* ``` | |

* Q(t) = P(t) . B'(t) | |

* ``` | |

* | |

* (6) Our task is to find a value of `t` such that the above equation | |

* `Q(t)` becomes zero, this is, the point-to-curve vector makes | |

* 90~degrees with the curve. We solve this with the Newton-Raphson | |

* method. | |

* | |

* (7) We first assume an arbitary value of factor `t`, which we then | |

* improve. | |

* | |

* ``` | |

* t := Q(t) / Q'(t) | |

* ``` | |

* | |

* Putting the value of `Q(t)` from the above equation gives | |

* | |

* ``` | |

* t := P(t) . B'(t) / derivative(P(t) . B'(t)) | |

* t := P(t) . B'(t) / | |

* (P'(t) . B'(t) + P(t) . B''(t)) | |

* ``` | |

* | |

* Note that `P'(t)` is the same as `B'(t)` because the constant is | |

* gone due to the derivative. | |

* | |

* (8) Finally we get the equation to improve the factor as | |

* | |

* ``` | |

* t := P(t) . B'(t) / | |

* (B'(t) . B'(t) + P(t) . B''(t)) | |

* ``` | |

* | |

* [note]: `B` and `B(t)` are different in the above equations. | |

*/ | |

FT_Error error = FT_Err_Ok; | |

FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */ | |

FT_26D6_Vec nearest_point; /* point on curve nearest to `point` */ | |

FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ | |

FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ | |

FT_26D6_Vec p; /* `point` to which shortest distance */ | |

FT_16D16 min_factor = 0; /* factor at `nearest_point' */ | |

FT_16D16 cross; /* to determine the sign */ | |

FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ | |

FT_UShort iterations; | |

FT_UShort steps; | |

if ( !conic || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( conic->edge_type != SDF_EDGE_CONIC ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

p0 = conic->start_pos; | |

p1 = conic->control_a; | |

p2 = conic->end_pos; | |

p = point; | |

/* compute substitution coefficients */ | |

aA.x = p0.x - 2 * p1.x + p2.x; | |

aA.y = p0.y - 2 * p1.y + p2.y; | |

bB.x = 2 * ( p1.x - p0.x ); | |

bB.y = 2 * ( p1.y - p0.y ); | |

cC.x = p0.x; | |

cC.y = p0.y; | |

/* do Newton's iterations */ | |

for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) | |

{ | |

FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; | |

FT_16D16 factor2; | |

FT_16D16 length; | |

FT_16D16_Vec curve_point; /* point on the curve */ | |

FT_16D16_Vec dist_vector; /* `curve_point` - `p` */ | |

FT_26D6_Vec d1; /* first derivative */ | |

FT_26D6_Vec d2; /* second derivative */ | |

FT_16D16 temp1; | |

FT_16D16 temp2; | |

for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) | |

{ | |

factor2 = FT_MulFix( factor, factor ); | |

/* B(t) = t^2 * A + t * B + p0 */ | |

curve_point.x = FT_MulFix( aA.x, factor2 ) + | |

FT_MulFix( bB.x, factor ) + cC.x; | |

curve_point.y = FT_MulFix( aA.y, factor2 ) + | |

FT_MulFix( bB.y, factor ) + cC.y; | |

/* convert to 16.16 */ | |

curve_point.x = FT_26D6_16D16( curve_point.x ); | |

curve_point.y = FT_26D6_16D16( curve_point.y ); | |

/* P(t) in the comment */ | |

dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); | |

dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); | |

length = VECTOR_LENGTH_16D16( dist_vector ); | |

if ( length < min ) | |

{ | |

min = length; | |

min_factor = factor; | |

nearest_point = curve_point; | |

} | |

/* This is Newton's approximation. */ | |

/* */ | |

/* t := P(t) . B'(t) / */ | |

/* (B'(t) . B'(t) + P(t) . B''(t)) */ | |

/* B'(t) = 2tA + B */ | |

d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x; | |

d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y; | |

/* B''(t) = 2A */ | |

d2.x = 2 * aA.x; | |

d2.y = 2 * aA.y; | |

dist_vector.x /= 1024; | |

dist_vector.y /= 1024; | |

/* temp1 = P(t) . B'(t) */ | |

temp1 = VEC_26D6_DOT( dist_vector, d1 ); | |

/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ | |

temp2 = VEC_26D6_DOT( d1, d1 ) + | |

VEC_26D6_DOT( dist_vector, d2 ); | |

factor -= FT_DivFix( temp1, temp2 ); | |

if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) | |

break; | |

} | |

} | |

/* B'(t) = 2t * A + B */ | |

direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x; | |

direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y; | |

/* determine the sign */ | |

cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), | |

direction.y ) - | |

FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), | |

direction.x ); | |

/* assign the values */ | |

out->distance = min; | |

out->sign = cross < 0 ? 1 : -1; | |

if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) | |

out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ | |

else | |

{ | |

/* convert to nearest vector */ | |

nearest_point.x -= FT_26D6_16D16( p.x ); | |

nearest_point.y -= FT_26D6_16D16( p.y ); | |

/* compute `cross` if not perpendicular */ | |

FT_Vector_NormLen( &direction ); | |

FT_Vector_NormLen( &nearest_point ); | |

out->cross = FT_MulFix( direction.x, nearest_point.y ) - | |

FT_MulFix( direction.y, nearest_point.x ); | |

} | |

Exit: | |

return error; | |

} | |

#endif /* USE_NEWTON_FOR_CONIC */ | |

/************************************************************************** | |

* | |

* @Function: | |

* get_min_distance_cubic | |

* | |

* @Description: | |

* Find the shortest distance from the `cubic` Bezier curve to a given | |

* `point` and assigns it to `out`. Use it for cubic curves only. | |

* | |

* @Input: | |

* cubic :: | |

* The cubic Bezier curve to which the shortest distance is to be | |

* computed. | |

* | |

* point :: | |

* Point from which the shortest distance is to be computed. | |

* | |

* @Output: | |

* out :: | |

* Signed distance from `point` to `cubic`. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

* @Note: | |

* The function uses Newton's approximation to find the shortest | |

* distance. Another way would be to divide the cubic into conic or | |

* subdivide the curve into lines, but that is not implemented. | |

* | |

* The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`. | |

* | |

*/ | |

static FT_Error | |

get_min_distance_cubic( SDF_Edge* cubic, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

/* | |

* The procedure to find the shortest distance from a point to a cubic | |

* Bezier curve is similar to quadratic curve algorithm. The only | |

* difference is that while calculating factor `t`, instead of a cubic | |

* polynomial equation we have to find the roots of a 5th degree | |

* polynomial equation. Solving this would require a significant amount | |

* of time, and still the results may not be accurate. We are thus | |

* going to directly approximate the value of `t` using the Newton-Raphson | |

* method. | |

* | |

* Let's assume that | |

* | |

* ``` | |

* p0 = first endpoint | |

* p1 = first control point | |

* p2 = second control point | |

* p3 = second endpoint | |

* p = point from which shortest distance is to be calculated | |

* ``` | |

* | |

* (1) The equation of a cubic Bezier curve can be written as | |

* | |

* ``` | |

* B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 + | |

* 3(1 - t)t^2 * p2 + t^3 * p3 | |

* ``` | |

* | |

* The equation can be expanded and written as | |

* | |

* ``` | |

* B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) + | |

* 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0 | |

* ``` | |

* | |

* With | |

* | |

* ``` | |

* A = -p0 + 3p1 - 3p2 + p3 | |

* B = 3(p0 - 2p1 + p2) | |

* C = 3(-p0 + p1) | |

* ``` | |

* | |

* we have | |

* | |

* ``` | |

* B(t) = t^3 * A + t^2 * B + t * C + p0 | |

* ``` | |

* | |

* (2) The derivative of the above equation is | |

* | |

* ``` | |

* B'(t) = 3t^2 * A + 2t * B + C | |

* ``` | |

* | |

* (3) The second derivative of the above equation is | |

* | |

* ``` | |

* B''(t) = 6t * A + 2B | |

* ``` | |

* | |

* (4) The equation `P(t)` of the distance from point `p` to the curve | |

* can be written as | |

* | |

* ``` | |

* P(t) = t^3 * A + t^2 * B + t * C + p0 - p | |

* ``` | |

* | |

* With | |

* | |

* ``` | |

* D = p0 - p | |

* ``` | |

* | |

* we have | |

* | |

* ``` | |

* P(t) = t^3 * A + t^2 * B + t * C + D | |

* ``` | |

* | |

* (5) Finally the equation of the angle between `B(t)` and `P(t)` can | |

* be written as | |

* | |

* ``` | |

* Q(t) = P(t) . B'(t) | |

* ``` | |

* | |

* (6) Our task is to find a value of `t` such that the above equation | |

* `Q(t)` becomes zero, this is, the point-to-curve vector makes | |

* 90~degree with curve. We solve this with the Newton-Raphson | |

* method. | |

* | |

* (7) We first assume an arbitary value of factor `t`, which we then | |

* improve. | |

* | |

* ``` | |

* t := Q(t) / Q'(t) | |

* ``` | |

* | |

* Putting the value of `Q(t)` from the above equation gives | |

* | |

* ``` | |

* t := P(t) . B'(t) / derivative(P(t) . B'(t)) | |

* t := P(t) . B'(t) / | |

* (P'(t) . B'(t) + P(t) . B''(t)) | |

* ``` | |

* | |

* Note that `P'(t)` is the same as `B'(t)` because the constant is | |

* gone due to the derivative. | |

* | |

* (8) Finally we get the equation to improve the factor as | |

* | |

* ``` | |

* t := P(t) . B'(t) / | |

* (B'(t) . B'( t ) + P(t) . B''(t)) | |

* ``` | |

* | |

* [note]: `B` and `B(t)` are different in the above equations. | |

*/ | |

FT_Error error = FT_Err_Ok; | |

FT_26D6_Vec aA, bB, cC, dD; /* A, B, C in the above comment */ | |

FT_16D16_Vec nearest_point; /* point on curve nearest to `point` */ | |

FT_16D16_Vec direction; /* direction of curve at `nearest_point` */ | |

FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */ | |

FT_26D6_Vec p; /* `point` to which shortest distance */ | |

FT_16D16 min_factor = 0; /* factor at shortest distance */ | |

FT_16D16 min_factor_sq = 0; /* factor at shortest distance */ | |

FT_16D16 cross; /* to determine the sign */ | |

FT_16D16 min = FT_INT_MAX; /* shortest distance */ | |

FT_UShort iterations; | |

FT_UShort steps; | |

if ( !cubic || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( cubic->edge_type != SDF_EDGE_CUBIC ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

p0 = cubic->start_pos; | |

p1 = cubic->control_a; | |

p2 = cubic->control_b; | |

p3 = cubic->end_pos; | |

p = point; | |

/* compute substitution coefficients */ | |

aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x; | |

aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y; | |

bB.x = 3 * ( p0.x - 2 * p1.x + p2.x ); | |

bB.y = 3 * ( p0.y - 2 * p1.y + p2.y ); | |

cC.x = 3 * ( p1.x - p0.x ); | |

cC.y = 3 * ( p1.y - p0.y ); | |

dD.x = p0.x; | |

dD.y = p0.y; | |

for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) | |

{ | |

FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; | |

FT_16D16 factor2; /* factor^2 */ | |

FT_16D16 factor3; /* factor^3 */ | |

FT_16D16 length; | |

FT_16D16_Vec curve_point; /* point on the curve */ | |

FT_16D16_Vec dist_vector; /* `curve_point' - `p' */ | |

FT_26D6_Vec d1; /* first derivative */ | |

FT_26D6_Vec d2; /* second derivative */ | |

FT_16D16 temp1; | |

FT_16D16 temp2; | |

for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) | |

{ | |

factor2 = FT_MulFix( factor, factor ); | |

factor3 = FT_MulFix( factor2, factor ); | |

/* B(t) = t^3 * A + t^2 * B + t * C + D */ | |

curve_point.x = FT_MulFix( aA.x, factor3 ) + | |

FT_MulFix( bB.x, factor2 ) + | |

FT_MulFix( cC.x, factor ) + dD.x; | |

curve_point.y = FT_MulFix( aA.y, factor3 ) + | |

FT_MulFix( bB.y, factor2 ) + | |

FT_MulFix( cC.y, factor ) + dD.y; | |

/* convert to 16.16 */ | |

curve_point.x = FT_26D6_16D16( curve_point.x ); | |

curve_point.y = FT_26D6_16D16( curve_point.y ); | |

/* P(t) in the comment */ | |

dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); | |

dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); | |

length = VECTOR_LENGTH_16D16( dist_vector ); | |

if ( length < min ) | |

{ | |

min = length; | |

min_factor = factor; | |

min_factor_sq = factor2; | |

nearest_point = curve_point; | |

} | |

/* This the Newton's approximation. */ | |

/* */ | |

/* t := P(t) . B'(t) / */ | |

/* (B'(t) . B'(t) + P(t) . B''(t)) */ | |

/* B'(t) = 3t^2 * A + 2t * B + C */ | |

d1.x = FT_MulFix( aA.x, 3 * factor2 ) + | |

FT_MulFix( bB.x, 2 * factor ) + cC.x; | |

d1.y = FT_MulFix( aA.y, 3 * factor2 ) + | |

FT_MulFix( bB.y, 2 * factor ) + cC.y; | |

/* B''(t) = 6t * A + 2B */ | |

d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x; | |

d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y; | |

dist_vector.x /= 1024; | |

dist_vector.y /= 1024; | |

/* temp1 = P(t) . B'(t) */ | |

temp1 = VEC_26D6_DOT( dist_vector, d1 ); | |

/* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ | |

temp2 = VEC_26D6_DOT( d1, d1 ) + | |

VEC_26D6_DOT( dist_vector, d2 ); | |

factor -= FT_DivFix( temp1, temp2 ); | |

if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) | |

break; | |

} | |

} | |

/* B'(t) = 3t^2 * A + 2t * B + C */ | |

direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) + | |

FT_MulFix( bB.x, 2 * min_factor ) + cC.x; | |

direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) + | |

FT_MulFix( bB.y, 2 * min_factor ) + cC.y; | |

/* determine the sign */ | |

cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), | |

direction.y ) - | |

FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), | |

direction.x ); | |

/* assign the values */ | |

out->distance = min; | |

out->sign = cross < 0 ? 1 : -1; | |

if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) | |

out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ | |

else | |

{ | |

/* convert to nearest vector */ | |

nearest_point.x -= FT_26D6_16D16( p.x ); | |

nearest_point.y -= FT_26D6_16D16( p.y ); | |

/* compute `cross` if not perpendicular */ | |

FT_Vector_NormLen( &direction ); | |

FT_Vector_NormLen( &nearest_point ); | |

out->cross = FT_MulFix( direction.x, nearest_point.y ) - | |

FT_MulFix( direction.y, nearest_point.x ); | |

} | |

Exit: | |

return error; | |

} | |

/************************************************************************** | |

* | |

* @Function: | |

* sdf_edge_get_min_distance | |

* | |

* @Description: | |

* Find shortest distance from `point` to any type of `edge`. It checks | |

* the edge type and then calls the relevant `get_min_distance_*` | |

* function. | |

* | |

* @Input: | |

* edge :: | |

* An edge to which the shortest distance is to be computed. | |

* | |

* point :: | |

* Point from which the shortest distance is to be computed. | |

* | |

* @Output: | |

* out :: | |

* Signed distance from `point` to `edge`. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

*/ | |

static FT_Error | |

sdf_edge_get_min_distance( SDF_Edge* edge, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

if ( !edge || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

/* edge-specific distance calculation */ | |

switch ( edge->edge_type ) | |

{ | |

case SDF_EDGE_LINE: | |

get_min_distance_line( edge, point, out ); | |

break; | |

case SDF_EDGE_CONIC: | |

get_min_distance_conic( edge, point, out ); | |

break; | |

case SDF_EDGE_CUBIC: | |

get_min_distance_cubic( edge, point, out ); | |

break; | |

default: | |

error = FT_THROW( Invalid_Argument ); | |

} | |

Exit: | |

return error; | |

} | |

/* `sdf_generate' is not used at the moment */ | |

#if 0 | |

/************************************************************************** | |

* | |

* @Function: | |

* sdf_contour_get_min_distance | |

* | |

* @Description: | |

* Iterate over all edges that make up the contour, find the shortest | |

* distance from a point to this contour, and assigns result to `out`. | |

* | |

* @Input: | |

* contour :: | |

* A contour to which the shortest distance is to be computed. | |

* | |

* point :: | |

* Point from which the shortest distance is to be computed. | |

* | |

* @Output: | |

* out :: | |

* Signed distance from the `point' to the `contour'. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

* @Note: | |

* The function does not return a signed distance for each edge which | |

* makes up the contour, it simply returns the shortest of all the | |

* edges. | |

* | |

*/ | |

static FT_Error | |

sdf_contour_get_min_distance( SDF_Contour* contour, | |

FT_26D6_Vec point, | |

SDF_Signed_Distance* out ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

SDF_Signed_Distance min_dist = max_sdf; | |

SDF_Edge* edge_list; | |

if ( !contour || !out ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

edge_list = contour->edges; | |

/* iterate over all the edges manually */ | |

while ( edge_list ) | |

{ | |

SDF_Signed_Distance current_dist = max_sdf; | |

FT_16D16 diff; | |

FT_CALL( sdf_edge_get_min_distance( edge_list, | |

point, | |

¤t_dist ) ); | |

if ( current_dist.distance >= 0 ) | |

{ | |

diff = current_dist.distance - min_dist.distance; | |

if ( FT_ABS(diff ) < CORNER_CHECK_EPSILON ) | |

min_dist = resolve_corner( min_dist, current_dist ); | |

else if ( diff < 0 ) | |

min_dist = current_dist; | |

} | |

else | |

FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" )); | |

edge_list = edge_list->next; | |

} | |

*out = min_dist; | |

Exit: | |

return error; | |

} | |

/************************************************************************** | |

* | |

* @Function: | |

* sdf_generate | |

* | |

* @Description: | |

* This is the main function that is responsible for generating signed | |

* distance fields. The function does not align or compute the size of | |

* `bitmap`; therefore the calling application must set up `bitmap` | |

* properly and transform the `shape' appropriately in advance. | |

* | |

* Currently we check all pixels against all contours and all edges. | |

* | |

* @Input: | |

* internal_params :: | |

* Internal parameters and properties required by the rasterizer. See | |

* @SDF_Params for more. | |

* | |

* shape :: | |

* A complete shape which is used to generate SDF. | |

* | |

* spread :: | |

* Maximum distances to be allowed in the output bitmap. | |

* | |

* @Output: | |

* bitmap :: | |

* The output bitmap which will contain the SDF information. | |

* | |

* @Return: | |

* FreeType error, 0 means success. | |

* | |

*/ | |

static FT_Error | |

sdf_generate( const SDF_Params internal_params, | |

const SDF_Shape* shape, | |

FT_UInt spread, | |

const FT_Bitmap* bitmap ) | |

{ | |

FT_Error error = FT_Err_Ok; | |

FT_UInt width = 0; | |

FT_UInt rows = 0; | |

FT_UInt x = 0; /* used to loop in x direction, i.e., width */ | |

FT_UInt y = 0; /* used to loop in y direction, i.e., rows */ | |

FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */ | |

FT_Short* buffer; | |

if ( !shape || !bitmap ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

if ( spread < MIN_SPREAD || spread > MAX_SPREAD ) | |

{ | |

error = FT_THROW( Invalid_Argument ); | |

goto Exit; | |

} | |

width = bitmap->width; | |

rows = bitmap->rows; | |

buffer = (FT_Short*)bitmap->buffer; | |

if ( USE_SQUARED_DISTANCES ) | |

sp_sq = FT_INT_16D16( spread * spread ); | |

else | |

sp_sq = FT_INT_16D16( spread ); | |

if ( width == 0 || rows == 0 ) | |

{ | |

FT_TRACE0(( "sdf_generate:" | |

" Cannot render glyph with width/height == 0\n" )); | |

FT_TRACE0(( " " | |

" (width, height provided [%d, %d])\n", | |

width, rows )); | |

error = FT_THROW( Cannot_Render_Glyph ); | |

goto Exit; | |

} | |

/* loop over all rows */ | |

for ( y = 0; y < rows; y++ ) | |

{ | |

/* loop over all pixels of a row */ | |

for ( x = 0; x < width; x++ ) | |

{ | |

/* `grid_point` is the current pixel position; */ | |

/* our task is to find the shortest distance */ | |

/* from this point to the entire shape. */ | |

FT_26D6_Vec grid_point = zero_vector; | |

SDF_Signed_Distance min_dist = max_sdf; | |

SDF_Contour* contour_list; | |